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1. Single-Plate Stereo Rectification
In this section we provide additional analyses and im-

plementation details for our single-plate stereo rectification
method. Sec. 1.1 describes how we extract correspondences
in the absence of ground truth for all of our experiments.
Sec. 1.2 demonstrates the rectification quality of the Key-
stoneDepth collection by analyzing the amount of vertical
parallax between the stereo pairs. And finally, Sec. 1.3 gives
more details on how the affine model is a degenerate case.

1.1. Correspondence Extraction

To find reliable image correspondences between the left
and right sides of a stereograph, we use a combination of
SIFT [3] and optical flow [1]. We observe that SIFT fea-
tures have the advantage of avoiding ambiguous matches in
textureless regions, while FlowNet2 avoids outliers by con-
sidering non-local image context. Based on these observa-
tions, we first compute optical flow and filter matches with
forward-backward consistency threshold of 1 pixel. We
then extract SIFT matches and keep a SIFT match only if
it passes a ratio test threshold of 0.7 [4] and its correspond-
ing point is less than 3 pixels away from its flow match.

1.2. Rectification Quality Assessment

We assessed the performance of our rectification algo-
rithm by analyzing the amount of residual vertical parallax
within the rectified artifact-free stereo pairs, across the en-
tire KeystoneDepth collection. Perfect image rectification
should result in stereo pairs with zero vertical parallax. The
amount of vertical parallax over all matches across the en-
tire collection has a mean of 0.26 pixels and a standard
deviation of 0.33 pixels, and more than 96.1% percent of
matches have a vertical parallax below 1 pixel.

Fig. 1 shows how these errors are distributed across im-
ages. It plots the percentage of images whose median (blue
curve) and 95th-percentile matches (orange curve) are be-
low a specific amount of vertical parallax. It shows that
99.95% of images have a median vertical parallax below
1 pixel; and that 68.4% and 99.4% of images have a per-
image 95-percentile of vertical parallax of below 1 pixel and
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Figure 1: Distribution of per-image median and 95-percentile
of vertical parallax in KeystoneDepth collection. 99.95% of im-
ages have a median vertical parallax below 1 pixel. 68.4% and
99.4% of images have a per-image 95-percentile of vertical paral-
lax of below 1 pixel and 2 pixels, respectively. Note that our auto-
mated method for computing the image matches used to calculate
these statistics is not perfect, and so some amount of matching
errors and outliers inflate these values.

2 pixels, respectively. Note that our automated method for
computing the image matches (Section 1.1) used to calcu-
late these statistics is not perfect, and so some amount of
matching errors and outliers inflate these values.

The main take-away from all of these statistics is that
vertical parallax is not a significant issue in the vast ma-
jority of rectified images, and the dataset is therefore well-
suited for stereo algorithms. Nevertheless, we found that an
optical flow method (FlowNet2) outperformed most state of
the art stereo methods for disparity estimation. While the
optical flow method does do better in the few cases where
vertical parallax is present, these failures still occur even
when the vertical disparity is sub-pixel, and thus we at-
tribute FlowNet2’s better performance to its invariance to
noise and exposure characteristics of antique images. We
expect the KeystoneDepth dataset will encourage develop-
ment of stereo algorithms that are robust to these specific
types of image artifacts.
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1.3. Degenerate Case

As mentioned in the main paper, one degenerate case is
when the two images are approximately the same up to a
2D affine transformation. More specifically, if the follow-
ing affine transformation holds for all corresponding points
ul,ur in the left and right images respectively,

ul =

a b c
d e f
0 0 1

ur, (1)

then the the stereo images can be rectified by ∀γ,

Hl =

1 −γ 0
γ 1 0
0 0 1

 , Hr =

e −d 0
d e f
0 0 1

+γ
b −a 0
a b c
0 0 1

 .
2. Implementation Details

In this section, we provide implementation details for
training the inpainting networks (Sec. 2.1) and generating
boundary maps (Sec. 2.2).

2.1. Training

We trained our intensity and depth inpainting networks
using the KeystoneDepth collection with a train, validation
and test split ratio of 94%, 5% and 1%, using the Adam
solver [2] with β1 = 0.9, β2 = 0.999. We use a batch
size of 4, a learning rate of 2 × 10−4, and train for 53
epochs. During training, all images have a spatial resolu-
tion of 512× 512. Training required about two days with a
Nvidia GTX 1080Ti GPU.

2.2. Boundary Map

Recall that we introduce a ”boundary map” as an addi-
tional input to our inpainting networks in order to encour-
age them to produce sharp transitions between foreground
and background scene elements. This is a binary mask
where pixels having a value of 1 correspond to the ”fore-
ground side” of boundaries between the foreground and
background, and 0 elsewhere. Defining the mask in this
way has the desirable effect of causing the boundary map to
remain intact and consistent when it is projected to another
camera viewpoint. Specifically, we apply a Laplacian fil-
ter to the disparity map and define the boundary mask to be
on the positive side. A second criterion is that the relative
difference in disparities between nearby pixels must exceed
a threshold. Given a disparity map D, we set the bound-
ary map at pixel (u, v) to be one if and only if it passes the
following two tests, and zero otherwise:

1. D(u, v)−GaussBlur(D, (ks, ks))(u, v) > ε, with a
spatial kernel size of ks = 15, and threshold ε = 10−9.

2. Since zero disparity is prone to numeric error,
we compute D̂ = max(3, D). Then we
threshold the relative difference by testing whether
D̂(u,v)−erode(D̂,(ke,ke))(u,v)

D̂(u,v)
> δ, where we apply a

morphological erosion operator on the disparity map
with kernel ke = 5 and apply a threshold of δ = 0.1.
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